equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////






Em física de partículas, o número bariônico, ou número bariónico, é um número quântico invariante ou nulo. Pode ser definido como um terço do número de quarks menos o número de antiquarks dentro do sistema:

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

onde

 é o número de quarks, e
 é o número de antiquarks.





As partículas idênticas são partículas que não podem ser distinguidas entre si, inclusive em princípio. Tanto as partículas elementares como partículas compostas (como prótons ou átomos) são idênticas a outras partículas de sua mesma espécie.

Em física clássica, é possível distinguir partículas individuais em um sistema, inclusive se têm as mesmas propriedades mecânicas. Tanto se pode "etiquetar" ou "pintar" cada partícula para distinguí-la das demais, ou tanto se pode seguir com detalhe suas trajetórias. Entretanto, isto não é possível para partículas idênticas em mecânica quântica. As partículas quânticas estão especificadas exatamente por seus estados mecânico-quânticos, de forma que não é possível assinalar-se propriedades físicas ou "etiquetas" adicionais, além de um nível formal. Seguir a trajetória de cada partícula também é impossível, já que sua posição e seu momento não estão definidas com exatidão simultaneamente em nenhum momento (conforme o princípio da incerteza de Heisenberg).

Isso tem consequências importantes em mecânica estatística. Os cálculos em mecânica estatística baseiam-se em argumentos probabilísticos, que são sensíveis se os objetos estudados são idênticos ou não. Assim sendo, as partículas idênticas exibem um comportamento estatístico "massivo" marcadamente distinto daquele das partículas clássicas (distinguíveis).

Partículas idênticas e energia de intercâmbio

É possível elucidar estas afirmações com um pouco de detalhe técnico. A "identidade" das partículas está ligada à simetria dos estados mecanico-quânticos devido ao intercâmbio de etiquetas das partículas. Isto dá lugar a dois tipos de partículas, que se comportam de forma diferente, chamadas férmions e bósons. (Há também um terceiro tipo, anyons e sua generalização, pléktons).

Se considerarmos um sistema com duas partículas idênticas, pode-se supor que o vetor de estado de uma partícula é |ψ>, e o vetor de estado da outra partícula é |ψ′>. Pode-se representar o estado do sistema combinado, que é uma combinação não especificada dos estados de uma partícula, como:

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

.

Se as partículas são idênticas, então: (i) seus vetores de estados ocupam espaços de Hilbert matematicamente idênticos; e (ii) |ψψ′> e |ψ′ ψ> terão a mesma probabilidade de colapsar a qualquer outro estado multipartícula |φ>:

Esta propriedade se chama simetría de intercâmbio. Uma forma de satisfazer essa simetría é que a permutação só induza uma fase:

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Sem dúvida, duas permutações conduzirão à identidade (visto que as etiquetas voltarão a suas posições originais), donde se requer que e2iα = 1. Então, ou

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

que se chama um estado totalmente simétrico, ou

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

que se chama estado totalmente antisimétrico.

Férmions, bósons, anyones e pléktons

No tópico precedente, não se demonstrou que os estados totalmente simétricos ou antissimétricos sejam a única forma possível de se satisfazer a simetria de intercâmbio. Sem dúvida, é constatado empiricamente que as partículas encontradas na natureza têm estados quânticos que são totalmente simétricos ou totalmente antissimétricos, com exceções menores que são discutidas mais adiante. Por exemplo, os fótons sempre formam estados totalmente simétricos, e os eléctrons sempre formam estados totalmente antissimétricos.

As partículas que exibem estados totalmente antissimétricos se chamam férmions. A antissimetria total dá lugar ao princípio de exclusão de Pauli, que proíbe que férmions idênticos estejam no mesmo estado quântico; esta é a razão da tabela periódica, e da estabilidade da matéria. O princípio de exclusão de Pauli leva à estatística de Fermi-Dirac, que descreve sistemas de muitos férmions idênticos.

As partículas que exibem estados totalmente simétricos se chaman bósons. Diferentemente dos férmions, os bósons idénticos podem compartilhar estados quânticos. Por causa disso, os sistemas com muitos bósons idênticos se descrevem pela estatística de Bose-Einstein. Isso dá lugar a diversos fenômenos, como o laser, o condensado de Bose-Einstein e a superfluidez.

Há pelo menos uma exceção a esse esquema: em certos sistemas bidimensionais sujeitos a um campo magnético intenso, pode haver uma simetria "mista". Estas partículas exóticas, conhecidas como anyones (Não confundir com ânions!), são regidas pela estatística fracional. Este fenômeno foi observado em gases de elétrons bidimensionais que formam a capa de inversão nos MOSFETs.

Há uma estatística a mais, para os pléktons.

Teorema da estatística do spin relaciona a simetria de intercâmbio de partículas idênticas com o seu spin. Afirma que os bósons têm spin inteiro, e os férmions têm spin semi-inteiro. Os anyones têm spin fracionário.

Estatísticas

Foi dito que os bósons, os férmions e as partículas distinguíveis dão lugar a estatísticas diferentes. Isto pode ser demonstrado com um modelo de duas partículas:

Trata-se de um sistema de duas partículas, A e B, no qual cada partícula possa estar em dois possíveis estados, etiquetados |0> e |1>, de mesma energia. Se este sistema evolui no tempo, interagindo com um entorno "ruidoso" (intercambiando energia de forma aleatória), os estados se povoarão de forma aleatória (já que os estados |0> e |1> são energeticamente equivalentes). Ao cabo de certo tempo, o sistema se distribuirá probabilisticamente em todos seus estados possíveis.

Se A e B são partículas distinguíveis, o sistema composto tem quatro estados possíveis (e equiprováveis): |0>|0>, |1>|1>, |0>|1>, e |1>|0>. A probabilidade de obter as duas partículas no estado |0> é 0,25; a probabilidade de obter as duas no estado |1> é 0,25; e a probabilidade de obter uma no estado |0> e outra no estado |1> é 0,5.

Se A e B são bósons idênticos, o sistema composto só tem três estados possíveis: |0>|0>, |1>|1>, y 2-1/2(|0>|1> + |1>|0>). Quando se fizer a medição, a probabilidade de obter duas partículas no estado |0> será agora 0,33; a de obter as duas no estado |1> será 0,33; e a de obter uma em cada estado será 0,33.

Se A e B são férmions idênticos, só há um estado disponível ao sistema composto: o estado totalmente antissimétrico 2-1/2(|0>|1> - |1>|0>). Ao fazer a medição, inevitavelmente se encontrará que uma partícula está em estado |0> e a outra em estado |1>.

Os resultados se resumem na Tabela 1:

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Tabla 1: Estatísticas de duas partículas
PartículasAmbas 0Ambas 1Uma 0 e uma 1
Distinguíveis0.250.250.5
Bósons0.330.330.33
Férmions001

Como se pode ver, até um sistema de duas partículas exibe diferente comportamento estatístico entre bósons, férmions e partículas distinguíveis. Nos artigos estatística de Fermi-Dirac e estatística de Bose-Einstein são estendidos estes princípios a um número maior de partículas, com resultados qualitativamente similares.






Para um sistema físico composto por partículas de spin zero, existe um potencial de Coulomb blindado que é conhecido como potencial de Yukawa. Tal pontencial é da forma

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

e que é, claramente, um potencial do tipo central. Na equação acima,  é uma constante (positiva) de acoplamento que configura a intensidade da força efetiva,  é a massa da partícula afetada pelo potencial,  é a velocidade da luz e  a constante de Planck. Naturalmente, podemos mostrar que o potencial  está associada a uma força sempre atrativa.

A História

Hideki Yukawa (físico teórico japonês) mostrou na década de 1930 que tal potencial resulta da interação/troca de um campo escalar massivo como o campo de um bóson, também maciço. Uma vez que o mediador do campo correspondente tem um certo alcance, que é inversamente proporcional à massa do mediador de partícula [1]. Dado que o alcance aproximado da força nuclear era conhecido, a equação Yukawa poderia ser utilizada para prever o massa de repouso aproximada da partícula mediadora do campo de força, mesmo antes de ser descoberto. No caso da força nuclear, esta massa foi previsto ser cerca de 200 vezes a massa do elétron, e isto foi mais tarde considerado ser uma previsão da existência do píon, antes de ter sido detectado, em 1947.

Tal potencial tem várias aplicações, incluindo a interacção entre dois núcleos. Dois núcleos podem experimentar forte interação atrativa devido à taxa de câmbio pions carregados, semelhante à forma como duas partículas interagem eletromagneticamente através da troca de fótons. Como o campo eletromagnético é "transportado" por fótons, o campo piônico potencial, expressamente descrito por Yukawa, é "transportado" por pions.

Relação com o potencial de Coulomb

Potencial em função de r

Se tomarmos o limite  →  (ou até mesmo a igualdade) no potencial de Yukawa, nós temos

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

de modo que podemos identificar a equação acima, com a ε, como o potencial de Coulomb. Diferentemente do potencial de Yukawa, podemos ver claramente que  decresce muito lentamente, enquanto que o potencial de Yukawa decresce muito rapidamente (a depender da massa m). Por essa razão, dizemos que o potencial de Yukawa é um potencial de curto alcance, enquanto que o potencial de Coulomb não é. No gráfico que é apresentado ao lado, podemos ver como o potencial de Yukawa comporta-se, com a distância , para diferentes valores de .









rigidez magnética é o momento por unidade de carga de uma partícula. É uma quantidade de grande importância no campo da física de aceleradores e no estudo dos raios cósmicos.[1]

Fórmula para a rigidez magnética em termos do campo magnético normal

força de Lorentz, na ausência de um campo elétrico, pode ser escrita:

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

v × B=dp/dt

onde q é a carga de partículas, v é sua velocidade, B é o campo magnético pelo qual está se movendo, p é o momento da partícula e d/dt é a derivada em relação ao tempo.

Vamos considerar a situação em que a partícula está viajando perpendicularmente às linhas do campo magnético. Nesse caso, o lado esquerdo da equação acima se torna o produto qvB. O vetor de momentum mudará de direção à medida que se move através do campo magnético. Nós introduzimos um ângulo diferencial . Isso nos permite escrever o momento diferencial na forma dp = pdθ e simplesmente segue dp/dt = pdθ/dt. A velocidade angular é igual à velocidade v dividida pelo raio de curvatura da trajetória da partícula ρ. Assim, o lado direito da primeira equação se torna pv/ρ. Colocando tudo junto, é evidente que os termos de velocidade cancelam e o rearranjo produz:

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

p/q=Bρ

Esta é a rigidez magnética expressa em termos do campo magnético normal ao qual a partícula está viajando e seu raio de curvatura.[2]

Comentários

Postagens mais visitadas deste blog